
I N S T I T U T E  F O R  D E F E N S E  A N A L Y S E S

IDA Document D-3066
Log:  H  04-002090

June 2005

Focused Ground-Penetrating Radar
Backprojection Through a Lossy Interface

Elvis Dieguez

Approved for public release; 
distribution unlimited.



This work was conducted under contracts DASW01 04 C 0003/
W74V8H 05 C 0042, Task AK-2-1788, for the Offi ce of the Deputy Under 
Secretary of Defense (Science and Technology). The publication of this IDA 
document does not indicate endorsement by the Department of Defense, 
nor should the contents be construed as refl ecting the offi cial position of 
that Agency.

© 2005, 2006 Institute for Defense Analyses, 4850 Mark Center Drive,
 Alexandria, Virginia 22311-1882  •  (703) 845-2000.

This material may be reproduced by or for the U.S. Government pursuant 
to the copyright license under the clause at DFARS 252.227-7013
(NOV 95).



I N S T I T U T E  F O R  D E F E N S E  A N A L Y S E S

IDA Document D-3066

Focused Ground-Penetrating Radar
Backprojection Through a Lossy Interface

Elvis Dieguez



 ii 

PREFACE 

This document was prepared for the Deputy Under Secretary of Defense (Science 
and Technology) and the U.S. Army Communications Electronics Command under a task 
titled “Assessment for Mine Detection.” 

The author acknowledges and thanks Dr. Jim Ralston for his limitless help. The 
author would also like to acknowledge Dr. Phillip Koehn and Erik Rosen for 
proofreading, comments, and corrections.  



 iii 

CONTENTS  

 I. Introduction...........................................................................................................1 

 II. Snell’s Law ...........................................................................................................3 
  A. Complex Angles and Snell’s Law................................................................3 
  B. Electromagnetic Waves in Both Media .......................................................4 
  C. Sanity Check: Reducing to Standard Form..................................................5 
  D. Relating Wave Numbers to Typical Physical Parameters ...........................6 
  E. Illustration by Example................................................................................8 

 III. GPR Backprojection and Snell’s Law ................................................................11 
  A. Theoretical Situation..................................................................................11 
  B. Numerical Analysis....................................................................................13 

 IV. Conclusion ..........................................................................................................15 

References..........................................................................................................................16 

Appendix......................................................................................................................... A-1 
 A. Derivation of cos[1/2δ + ψ(θ2)] ....................................................................... A-1 
 B. Quartic Polynomial Description for Lossless Materials .................................. A-2 



 iv 

FIGURES 

 1. General GPR Geometry ........................................................................................1 

 2. Snell’s Law: Lossless versus Lossy Refraction ....................................................8 

 3. 21 nn+ : Lossless versus Lossy Refraction.............................................................9 

 4. Refraction Limit 2ξ for θ2 = π/2 .........................................................................10 

 5. Theoretical Situation...........................................................................................11 

 6. Angle of Incidence Given P at (0, 0, 3) and O at (x, y, –5) ................................13 

 7. One-Way Difference with P at (0, 0, d) and O at (x, 0, –5)................................14 

 



 1 

I.  INTRODUCTION 

O

P
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Figure 1.  General GPR Geometry  

To create a synthetic aperture radar (SAR) image using ground-penetrating radar 
(GPR) data, one must know the round-trip distance between the antenna aperture and the 
point to be focused on. Given a beginning point O in media II, a “buried” point P within 
media I, and the relationship between the points, the index of refraction n and the total 
“luminal” distance R = n1R1 + n2R2 must be derived (see Figure 1).1

 
If we do not worry 

about refraction, the distance may be easily calculated using simple geometry. When 
refraction is taken into account, the problem becomes more difficult. When the refraction 
is governed by a lossy material, the problem becomes even more intractable and an 
appeal to numerical methods becomes necessary.  

                                                 
1  The total one-way travel time, T , for a ray of light is scaled by the speed of light in each respective 

media T = (R1/v1) + (R2/v2). The physical situation may be interpreted as a scaling of the respective 
path lengths, R = n1 R1 + n2 R2, such that T = R/c. 
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A natural question is: Why would we be interested in accounting for refraction? 
There are two immediate advantages to doing so. First, correcting for refraction would 
deposit the energy received by the antenna in the correct image pixel (i.e., at the correct 
physical distance), thereby placing any image anomaly (i.e., a potential target of interest) 
at the correct depth. Second, not accounting for refraction would effectively blur the 
image and degrade image fidelity. The disadvantage is increased computational 
complexity and processing time. However, efficient software coding and carefully chosen 
numerical techniques can reduce the complexity and processing to an insignificant 
percentage of the total image-processing algorithm. 

Deriving the equations that describe the optical path length between the 
originating point O and the terminating point P is best done through multiple 
transformations. The purpose of these transformations is to express the equations in a 
form easily understood with minimal mathematical complexity. The price to be paid is 
measured in proliferation of equations. However, at the end of the process, the resulting 
equations are few in number, comparatively simple, and written in terms of typical media 
parameters (dielectric constants, relative permeabilities, etc). Finally, Sections II.A and 
II.B closely follow the derivations presented in Stratton’s Electromagnetic Theory [1] but 
with updated notation and use of magnitudes and phases instead of separation into real 
and imaginary parts.  
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II.  SNELL’S LAW  

A. COMPLEX ANGLES AND SNELL’S LAW  

Given wave numbers CkRk ∈∈ 12  and , define k1 = |k1|eιχ. The standard form of 

Snell’s Law, k1sinθ1 = k2sinθ2, will result in an imaginary θ1: 

 2
1

2
1 sinsin θθ ιχ−= e

k
k  (1) 

 2
22

2
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2
2

1 sin1cos θθ ιχ−−±= e
k
k  (2)  

with the sign chosen by the boundary conditions and the requirement that the field is 
finite at all points in space. This is a problem because physically, the refraction angle 
cannot be complex. Moreover, we require a real geometric angle to focus SAR imagery. 
To facilitate our understanding of the relationship between the complex angle θ1 and the 
physical refraction angle ξ, we expand cos θ1 using complex notation such that  

 ιψρθ e=1cos  (3) 

with a solution found for ρ and ψ by squaring and using (2). The solution to the above is 
straightforward  
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and it is trivial to show  
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B.  ELECTROMAGNETIC WAVES IN BOTH MEDIA  

We assume in media II an electromagnetic plane wave is present such that it 
intersects the boundary between lossless media II and lossy media I (χ ≠ 0) at an incident 
angle θ2. Let EI, ER, and ET be the magnitude of the incident, reflected, and transmitted 
electromagnetic fields, respectively. The total electromagnetic wave present will be  

II: ( ) ( )trki
R

trki
I eEeE ωω −⋅′−⋅ +

rrrr
22  

I: ( )trki
T eE ω−⋅

rr
2  

in areas I and II. An electromagnetic wave propagates normal to the planes of constant 
phase, =⋅ rk rr

constant. For all angles of incidence except θ2 = 0, the planes of constant 
phase will not necessarily be parallel to the planes of constant amplitude. Consequently, 
the field within medium I will not constitute a standard plane electromagnetic wave. For 
simplicity, align ( )zxkk ˆcosˆsin 1111 θθ +=

r
 such that  

 

( ) ( )
( )

( ) ( ) xkkzk

xke

zzxxzxekrk

2211

221

1111
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sinkz

(1) using  thenˆˆˆcosˆsin

θψχρψχρι

θρ
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++++=

+=

+⋅+=⋅
+
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. (8) 

Define  

 ( ) ( ) ( )( )222 sin θψχθθ += pp  (9) 

 ( ) ( ) ( )( )222 cos θψχθθ += pq  (10) 

so the transmitted electromagnetic wave will be  

 ( ) ( )txkqzkpzk
T eeE ωθι −+− 2211 sin  (11) 

in lossy media I. Constant phase planes in media I will be defined by  

 z cos ξ+ x sin ξ = constant (12) 

from which the true form of Snell’s Law is revealed for lossy media  
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We will find it profitable to explicitly note the above equation’s “cousin”: 
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Whereas the phase velocity of light in the lossless media is  
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2

2 k
ωυ =  (15) 

a careful look at (11) will reveal the phase velocity of light in the lossy media in our 
geometry of interest (i.e., two semi-infinite regions separated by a plane) is dependent on 
the angle of incidence,  
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22
2

2
2

2
1

1
sin θθ

ωυ
kqk +

= . (16) 

We can define the ratio of the velocities as the ratio of the real index of refraction ( )21 θ+n  

in media I to the index of refraction n2 in media II  
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After some manipulation we arrive at the following summarized results: 
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C. SANITY CHECK: REDUCING TO STANDARD FORM  

Let χ = 0, then (17)–(21) reduce to  
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Given the above results and (13) we immediately see that 
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which is the standard Snell’s Law for refraction at the boundary between two lossless 
media.  

D. RELATING WAVE NUMBERS TO TYPICAL PHYSICAL PARAMETERS  

After reducing (17)–(21) to the standard form of Snell’s law when χ = 0, we 
relate k1 and k2 to typical known parameters. First, assume medium II is air so that k2 ≈ 
ω√(ε0µ0) = ω/c. Second, there are a number of standard descriptions for a complex wave 
number. If medium I is completely described by a complex permittivity ε1 and a real 
permeability µ1, then  
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µεω

µεωµεω
γ

=

==

k

ek  (28) 

 γχ
2
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In general, the permittivity, permeability, and conductivity of medium I are all 
functions of frequency. When exact solutions are required, the appropriate ε1(ω), µ1(ω), 
and/or σ1(ω) must be inserted into (28)–(29). In practice, however, for many materials µ1 

is very near µ0, and ε1 and σ1 are only weakly dependent on frequency.  

The physical characteristics of many lossy materials are often described in the 
literature through the use of the relative (real) permeability µr = (µ1/µ0), the real dielectric 
constant K = (Re{ε}/ε0), 

 
and the  loss angle δ such that tan δ = (Im{ε}/Re{ε}). 

Therefore, the previous equations for ρ(θ2) and ψ(θ2) become  
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A little algebra2 will provide 
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which, combined with the description of the lossy media (i.e., media I) using µr, K, and δ, 
describes the entire physical phenomena of refraction with the three equations:  
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McLaurin expansion of (32) will give some physical insight as to the strength of lossy 
refraction compared with non-lossy refraction.  
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2  See Appendix A for a short derivation. 
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where we immediately see cos(δ/2 + ψ(θ2)) ≅ 1 and sinξ = [sinθ2/(√Kµr)] for δ << π/4. 
Therefore, materials with small loss angles can be treated as essentially lossless and the 
angle of refraction calculated from the familiar form of Snell’s Law. 

E. ILLUSTRATION BY EXAMPLE 

For a soil mixture of 50% sand, 35% silt and 15% clay with a volumetric moisture 
content, mv, of 0.05, experimental measurements give K ≈ 5 and tan δ ≈ 1/10 over the 300 
MHz–1.3 GHz frequency range. Increasing the moisture content to mv = 0.20 results in K 
≈ 18 and tan δ ≈ 

 
2/18 over the same frequency range [2]. In Figure 2 we see that the 

effect of a nonzero loss angle is extremely minor. For all values of the angle of incidence 
θ2, the refraction angle is approximated extremely well by the standard form of Snell’s 
law. At the limitθ2 = π/2, the difference between the case K = 18, tan δ = 

 
2/18 and K = 

18, tan δ = 0 is less than 4 × 10–4 radians. In Figure 3 we see the lossy material has an 
indices of refraction ratio weakly dependent on the angle of incidence. 
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Figure 2.  Snell’s Law: Lossless versus Lossy Refraction 
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Figure 3.  21 nn+ : Lossless versus Lossy Refraction 

Therefore, as seen in Section II.D, materials with small loss angles, δ << π/4, can 
be treated as essentially lossless. The ability to treat weakly lossy materials as lossless 
will greatly reduce the computational complexity of focusing GPR and simplify the 
relevant equations enough to allow for a closed-form solution.  

Figure 4 illustrates an effect that will be of great interest to us in the following 
section, namely the limiting refraction angle 2ξ as the angle of incidence approaches the 
grazing angle:  

 ( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
→

→ rKq µ
δ

θ
ξ

πθ

cos1arctan22lim
2

22

. (37) 

This effect will compete with the reduction in the wavelength, += 10 nλλ , to determine 

the theoretical resolution of the GPR system. The figure plotted assumes the simplest 
case of µ1 = µ0 and frequency-independent K and δ. For small loss angles, the effect of 
absorption on the limiting angle of refraction is practically nonexistent. It is only for loss 
angles greater than approximately π/4 that the effect becomes noticeable. Evidently, the 
effect of the dielectric constant is significantly more important in determining the limiting 
refraction angle. 
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Figure 4.  Refraction Limit 2ξ for θ2 = π/2
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III.  GPR BACKPROJECTION AND SNELL’S LAW  

A. THEORETICAL SITUATION 

O

P

O

P
 

Figure 5.  Theoretical Situation 

Focused GPR backprojection requires knowledge of the round-trip time, 
( ) cRnRnt 2211 += +  between the points in the antenna aperture and the points in space we 

will focus on. We begin by assuming that we know both the coordinates of the antenna 
aperture O and the point P we wish to focus on: (x2, y2, z2) and (x1, y1, z1). We will further 
assume we have a right-handed coordinate frame where positive (increasing) values of z 
point into media I. For media II, we take the standard case of n2 ≅ 1 (air), and initially 
assume media I is a lossy soil mixture of 50% sand, 35% silt, and 15% clay (K = 5, tan δ 
= 1/10). However, because of the insignificant loss angle of many soils and the 
significantly increased computational complexity of treating the soil as lossy, we will 
eventually treat the soil as lossless and reap significant savings in processing time. 

From Figure 5, standard geometry gives: 
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 H = –z2 (38) 

 D = z1 (39) 

 ( ) ( )212
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12 yyxxL −+−=  (40) 
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from which we define (and require)  

 ( ) ( ) 0tancossin,,,,, 2
2

2
2 =−+= LH

Kq
DHLDKF

r
r θ

µ
δ

θ
θµδθ  (43) 

with the distance 1122 RnRn ++  given by  

( ) ( ) ⎥⎦
⎤

⎢⎣
⎡ ++=+=+

+
+

2
22

2
22

1

2
1122 sin

cos
cos

coscoscos
θθ

δ
µ

µ
δ

θθξθ
qK

Kq
DHDnHRnRn r

r

. (44) 

Our task is to find the roots of (43) that lie within the space θ2 ∈ [0, π/2], namely the 
angle of incidence given the coordinates of the origin and the point we wish to focus on. 
This will allow us to calculate our true interest, 2211 RnRn ++ . The nature of q(θ2) will 
make finding a closed-form solution difficult for lossy materials but, for lossless 
materials (δ = 0), the solution to (43) can be written in closed form using the quartic 
formula to find the roots of the fourth-order polynomial:  

 
( ) ( ) ( )[ ]

rr

rrrr

KLxHLK

xKLKHDxKHLxKH

µµ

µµµµ
2

2222342

2

1121

−+

−+−+−−−
 (45) 

where θ2 = arctan x. In solving (45), care must be taken in choosing the correct root, x ∈ 
[0, ∞]. Since many soils are characterized by small loss angles, equation (45) can often be 
used in place of the significantly more complicated (43), resulting in decreased 
computational complexity.3 

                                                 
3  See Appendix B for further discussion. 
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B. NUMERICAL ANALYSIS  

Assume that the synthesized aperture will focus at the point (0, 0, 3) and the 
antenna moves along a grid 5 cm above the surface. Using Matlab R14 we are able to 
solve for the angle of incidence given the aperture and “target” coordinates, and the 
results are illustrated in Figure 6 for our test soil mixture. The details of the figure match 
physical intuition: It is symmetric about the origin and disappears at the origin.  
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Figure 6.  Angle of Incidence Given P at (0, 0, 3) and O at (x, y, –5) 

To qualitatively understand how important refraction is in determining the 
luminal path length 2211 RnRnR += + , we will measure the difference between the true 

path traveled and the geometric, straight-line path defined by n1r1 + n2r2. 

 ( ) [ ]HKD
DH

LDHrnrn r ++
++

=+ µ
22

2211 . (46) 

The maximum one-way difference between the luminal path length and the geometric 
path length is approximately 8 cm (or 0.27 ns) when the antenna phase center is at (–25, 
0, –5) cm and is focusing at the point (0, 0, 7) cm. It is difficult to intuitively decide how 
much of an effect these differences would have on GPR data processing. On one hand, 
between 500 MHz–6 GHz an 8 cm difference will be approximately 0.13 to 1.6 
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wavelengths, which can introduce serious phase errors when summing the signal over the 
aperture. On the other hand, when the antenna is operated perpendicular and near the 
surface, most of the difference appears only at points where most of the signal received 
by the antenna would probably be of small amplitude compared with signals received 
from points with no significant need of refraction correction. However, antennas with 
main lobes of large angular extent or geometries where the antenna is oblique to the 
surface may increase the relative signal amplitudes. Therefore, the relative importance of 
correctly accounting for refraction can only be determined on a per antenna basis where 
Figure 7 is weighted by the antenna beam pattern and due consideration is given to the 
geometry of the physical system. 

 

Figure 7.  One-Way Difference with P at (0, 0, d) and O at (x, 0, –5) 
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IV.  CONCLUSION  

In summary, we have derived the Snell’s Law equations describing the refractory 
behavior of electromagnetic waves intersecting a boundary between lossless media and 
lossy media under the assumption of the existence of electromagnetic plane waves in 
media II. Furthermore, using Snell’s Law, we have explicitly derived the equations 
needed to describe the geometry of a standard GPR system-target package and 
quantitatively calculated the expected correction for a test case utilizing realistic soil 
parameters. However, the validity and urgency of correctly accounting for the refractive 
behavior is strongly dependent on the parameters of the GPR antenna utilized and the 
relative orientation of the antenna to the boundary.  
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APPENDIX 

A. DERIVATION OF ( )⎥⎦
⎤

⎢⎣
⎡ + 22
1cos θψδ  

Consider the square of the term we are interested in and expand 
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Then from equation (31) we immediately have  
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and therefore  

 
22

2cos
BA

B
+

=ψ  (49) 

 
22

2sin
BA

A
+

=ψ . (50) 

Simple algebra gives 
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from which we may easily see  
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Therefore, 
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B. QUARTIC POLYNOMIAL DESCRIPTION FOR LOSSLESS MATERIALS  

If δ = 0, then (43) reduces to  

 ( ) 0tan1sin
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22
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Squaring both sides and replacing terms gives  

 ( ) ( ) 0
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sintan2tan
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 ( ) ( ) 0sintansin 2
22

22
22 =−−− θµθθ rKLHD . (59) 

It will be advantageous to make the substitution 

 tanθ2 = x (60) 

 
1

sin 2

2
2

+
=→

x
xθ . (61) 

Then after expansion and term collection, we have  

 ( ) ( )[ ] 01 22222 =−+−− xxKLHxxD rµ  (62) 

and we can easily derive the quartic polynomial  
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rrrr

KLxHLK
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2222342
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1121

−+
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. (63) 

Practical use of (63) will require care taken in choosing the correct root, ),0[ ∞∈x . 

Although not explored in this paper, finite group theory may shed some light in 
understanding the behavior of the roots of (63) as a function of D, H, L, K, and µr. 
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